# Pethő Gábor, Vass Péter,

# **G**EOFIZIKA ALAPJAI





A Műszaki Földtudományi Alapszak tananyagainak kifejlesztése a TÁMOP 4.1.2-08/1/A-2009-0033 pályázat keretében valósult meg.

### **IX. SZEIZMOLÓGIAI ALAPOK**

### 1. Szeizmológiai történeti áttekintés



**Chang Heng** (78-139) A kínai **Chang Heng** Kr.u.132-ben megszerkesztette az első szeizmoszkópot, mellyel nem csak a rengés tényét lehetett megállapítani, hanem az epicentrum irányára is lehetett következtetni. A kínaiak a nagyobb földrengésekről részletes feljegyzéseket készítettek már jóval az időszámítás előtt, a japánok pedig 1600tól. Európában – Lisszabon közelében – 1755 november 1-én volt olyan földrengés, melynek utólag becsült magnitúdója 8,75 és több mint 70000 volt a halálesetek száma. Ezt a földrengést még 2000 km távolságban is észlelték, és a Földközi–tenger partjai mentén a szökőár (cunami) további pusztítást okozott. A földrengések közül 1819-es indiai (Kutch ()) volt az első, melynél felismerték, hogy az elmozdulás törésvonal mentén történt.

Ismereteink szerint a mai Magyarország területén a legnagyobb erősségű, feljegyzett földrengés 1763-ban Komáromban volt, melynek becsült magnitúdója 6,3. A Balaton és Komárom közti móri vonal mentén 1806ban és 1810-ben két-két darab legalább 5-ös erősségű földrengés pattant ki, melyek közül az 1810 januári földrengést **Kitaibel** és **Tomtsányi** 1814-ben részletesen leírták. Tanulmányukban bemutatták a legnagyobb kárt szenvedett terület határvonalát és az első lökés irányának területi eloszlását is.

A XIX. század a rugalmasságtan elmélete szempontjából termékeny időszaknak bizonyult: 1821-22-ben adta meg **Navier** és **Cauchy** a rugalmasságtan alapegyenleteit és a rugalmasságtan elméletét. **Poisson** 1830-ban bebizonyította, hogy homogén rugalmas közegben kétféle testhullám – longitudinális (P) és transzverzális (S) – létezik. **Stokes** 1845-ben az összenyomhatatlansági és nyírási együtthatót vezette be. 1887-ben **Rayleigh** írta le a fél-tér felszínén terjedő felületi hullámot (*Rayleigh hullám*). A másik felületi hullám létezésének bizonyítása **Love** érdeme (1911). Ugyanő végezte el a Föld sajátrezgéseivel kapcsolatos első számításokat is (1911).



**mil Johann Wieche** (1861-1928)

Az első szeizmométert, mellyel a talajrészecskék időbeli elmozdulását regisztrálni lehetett, **Cecchi** fejlesztette ki 1875-ben. 1880-tól **Milne**, **Gray** és **Ewing** tokiói együttműködésének eredménye volt a horizontális szeizmográf kifejlesztése. Nagy távolságban (Japánban) kipattant földrengést 1889-ben mértek műszeresen először (Potsdam). A **Wiechert** által konstruált szeizmográfok (1903) később az egész világon elterjedtek. 1906-ban a San-Francisco-i földrengést már a Föld több, egymástól távol eső helyén tudták regisztrálni. Az 1906-os kaliforniai Szent András törésvonal menti földrengést követően **Reid** kidolgozta a tektonikai eredetű földrengések kialakulására vonatkozó, ma is elfogadott "rugalmas kiegyenlítődés" elméletét. **Kövesligethy** 1907-ben összefüggést vezetett le földrengések fészekmélységének meghatározására.

*Wiechert* (1897) feltételezte, hogy a Föld középső része nagy sűrűségű és fémes összetételű. Tőle származik a magot körülvevő köpeny elnevezés is. *Oldham* (1906) elsőként feltételezte, hogy a Föld magjában egy kis sebességű zónának is kell lenni. Erre abból következtetett, hogy a földrengések fészkével átellenes oldalon lévő szeizmológiai obszervatóriumokba a longitudinális hullámok később érkeztek be, mint a 100°-nál kisebb epicentrális távolságú állomásoknál tapasztalt értékek alapján várt. Oldham a P-hullám beérkezések árnyékzónájára is következtetett.



Andrija Mohorovičić (1857-1936)

**Mohorovicic** horváth geofizikus (és meterológus) mutatta ki elsőként a földkéreg és földköpeny közti határfelületet 1909 október 8-án a Kulpa-völgyi földrengés hullámainak vizsgálatakor. Az epicentrumtól mintegy 200km-en túl azt tapasztalta, hogy a köpeny határfelületén haladó kritikus szögben refraktált hullámból származó beérkezések megelőzték a direkt hullámot. A kéreg-köpeny határfelület mélységét 54km-nek számította ki, és megadta a sebesség növekedés mértékét is (5,6km/s-ről 7,9km/sec).

Oldham feltételezéseit **Gutenberg** (1914) bizonyította be. Megállapította, hogy a P hullám árnyékzónája 105° és 143° epicentrális távolság között jelentkezik, és 2900km mélységben adta meg a földmagföldköpeny határfelület mélységét.

1925 – **Conrad** ekkor dolgozta fel a Keleti Alpokban (Tauern) 1923-ban kipattant földrengés adatait - óta ismert, hogy a kontinentális kéreg két részből áll.

**Lehmann** dán szeizmológus vette észre 1936-ban, hogy a P hullám árnyékzónájában kis amplitúdójú longitudinális hullámok regisztrálhatók. Ebből arra következtetett, hogy a mag belsejében a longitudinális hullámok terjedési sebessége lényegesen nagyobb, mint a mag külső részében.

**Benioff** (1954) rögzítette azt a tényt, hogy a mélytengeri árkok környezetében kipattant földrengések mélységeloszlása egy 30-60°–os dőlésű, viszonylag szűk sávhoz, az aláhajló litoszférához köthető. Ezt a tértartományt Benioff-zónának nevezték el. A lemeztektonika elmélete a 60-as évek végére kristályosodott ki.

A földrengések jellemzésére az első intenzitás skála kidolgozása **Rossi** és **Forel** (1883) nevéhez fűződik, mely egy tíz fokozatú skála volt. A japán hét fokozatú **Shindo** skálát **Omori** dolgozta ki 1894-ben. **Mercalli** intenzitás skálája (1897) kezdetben tízfokozatú volt. Az USA-ban még ma is használatos 12 fokozatú skála bevezetése (1931) **Wood** és **Neumann** érdeme. Az intenzitás skálák közös jellemzője, hogy a fokozatokat a felszínen tapasztalt jelenségek és pusztító hatások alapján lehet meghatározni az adott helyre, és az egyes fokozatok a talajrészecskék gyorsulásával arányosak.

A földrengés hipocentrumában felszabaduló energia jellemzésére a magnitúdó használatos, melyre az első definíciót Richter 1935-ben adta meg. E szerint a magnitúdó egy standard (*Wood-Anderson*) szeizmográffal a 100km-re az epicentrumtól felvett szeizmogramon a legnagyobb kitérés (mikronban mért amplitúdójának) tízes alapú logaritmusa.

**Press** és **Ewing** az USA-ban 1952-ben fejlesztette ki a három komponens regisztrálását lehetővé tevő elektromechanikus szeizmográfot. A jelenlegi szeizmológiai obszervatóriumokban különböző periódusidejű elektrodinamikus szeizmográfokat használnak és a rendszerek rendkívül nagy erősítéssel jellemezhetők. Így 10<sup>-9</sup> m talajelmozdulás is kimutatható.

A szeizmológia egyre több és nagyobb felbontású mérései a Föld belső felépítésének egyre pontosabb megismerését segítik elő. Bár más módszerekkel is kiegészítve intenzív kutatások folynak a földrengések prognosztizálása területén, jelenlegi ismereteink alapján nem tudjuk a földrengéseket előre jelezni.

Az Átfogó Atomcsend Szerződés (Comprehensive Nuclear-Test-Ban Treaty, CTBT, 1996-ban nyitották meg aláírásra) keretében létrehoztak egy ellenőrzési rendszert, melynek része a szeizmikus megfigyelő rendszer. Ennek a rendszernek jelenleg 76 országban összesen 170 állomása van, ezek közül 50 elsődleges, 120 pedig úgynevezett kiegészítő állomás. 2009-ben az elkészültség kb. 80 %-os volt. Az állomások fő feladata, hogy a teljes hullámalak elemzésével a nukleáris robbantásokat a földerengésektől megkülönböztessék, és a nukleáris robbantásokat pedig területileg minél pontosabban lehatárolják.

2. Elméleti alapok

#### Longitudinális és transzverzális hullámok

Mechanikai értelemben merev, rugalmasan deformálható továbbá képlékeny testeket különböztetünk meg. A szeizmikus hullámterjedés rugalmas közegben valósul meg, azaz a feszültség és alakváltozás között jó közelítéssel lineáris összefüggés van. Rugalmas közegben a rezgésállapot megszűnte után a közeg eredeti alakját veszi fel. A hullámegyenletek a homogén izotróp közegben terjedő testhullámokra (longitudinális és transzverzális) adhatók meg. A levezetés során a rugalmasan deformálható test mozgásegyenletét kell felírni. A levezetéseket mellőzve a két testhullámra vonatkozó egyenlet:

$$\frac{\partial^2 \theta}{\partial t^2} = \frac{\lambda + 2\mu}{\rho} \Delta \theta$$
$$\frac{\partial^2 \psi}{\partial t^2} = \frac{\mu}{\rho} \Delta \psi$$

A fenti egyenletben a  $\beta$  skalár potenciál az  $\vec{\mu}$  elmozdulás vektor divergenciája, az alsóban  $\vec{\psi}$  vektorpotenciál az elmozdulás vektor rotációja,  $\lambda$  és  $\mu$  a Lamé állandókat,  $\rho$  a sűrűséget jelöli. A felső egyenlet vonatkozik a longitudinális (primér, P, kompressziós) hullámra, mert olyan mozgást ír le, amelynél a terjedés irányában sűrűsödés és ritkulás váltakozik. Ennek eredményeként az elemi részecskék a következő animációban látható, a hullámterjedés irányával egybeeső longitudinális mozgást végeznek.

 P HULLÁM



A második egyenlet a transzverzális (szekunder, S, nyírási) hullámra vonatkozik. Itt a részecskék mozgásának iránya merőleges a terjedési irányra és térfogatváltozás nincs. Megkülönböztetünk SV és SH hullámot attól függően, hogy az S hullám terjedése során a részecskék a függőleges (SV hullám) vagy a vízszintes síkban (SH hullám) végzik rezgésüket. A következő animáció az SV hullám terjedését szemlélteti.



A fenti hullámegyenletekben az elsőből a longitudinális hullám sebessége adható meg:

$$v_P = \sqrt{\frac{\lambda + 2\mu}{\rho}}$$

míg a másodikból a transzverzálisé:

$$v_s = \sqrt{\frac{\mu}{\rho}}$$

Az összefüggések szerint a rugalmas hullámok terjedési sebességét a Lamé állandók ( $\lambda$  és  $\mu$ ) és a sűrűség ( $\rho$ ) határozza meg. A longitudinális hullám gyorsabban terjed, mint a transzverzális, ami matematikailag könnyen belátható, mert a Lamé állandók pozitív értékek. Az is látható, hogy a két testhullám sebesség aránya a sűrűségtől nem, a rugalmassági állandóktól viszont függ. Ez az arány a gyakorlatban elfogadható  $\lambda = \mu$  feltételezéssel  $\sqrt{3}$ .

A legfontosabb rugalmassági állandókat és definíciójukat a 9.1és 9.2. ábrán mutatjuk be.



A Young modulusz egyirányú húzás vagy nyomás mellett definiálható a feszültség és az alakváltozás hányadosaként. a relatív átmérő-változás és a relatív hosszváltozás hányadosaként.

9.1. ábra: A Young modulusz és Poisson szám definiálása [i]

Geotechnikai alkalmazásokban a **nyírási modulusz** és az **öszenyomhatósági tényező** ismerete különösen fontos. A transzverzális hullám terjedési sebessége és a kőzet sűrűsége ismeretében a nyírási modulusz számítható. A nyírási modulusz és a longitudinális hullám terjedési sebességének ismeretében a longitudinális hullám sebességére vonatkozó fenti összefüggés átalakításával pedig a *K* térfogati rugalmassági tényező fejezhető ki (mivel a rugalmassági tényezők egymás függvényeiként adhatók meg):

$$v_p = \sqrt{(4\mu/3 + K)/\rho}$$

A megadott rugalmassági állandók mértékegysége N/m<sup>2</sup>, kivéve a Poisson számot, mely dimenzió nélküli mennyiség. Kőzetekre a Young modulusz, nyírási modulusz és az összenyomhatósági tényező általában 10<sup>10</sup>-10<sup>11</sup> N/m<sup>2</sup> nagyságrendű.

Rugalmassági állandók (2) Szilárdsági (v. nyírási modulusz) (μ) és összenyomhatósági tényező (1/K)



A nyírási modulusz (μ) nyíróigénybevétel mellett adható meg: a hengeres próbatestnél a tangenciális erőhatás miatti nyírófeszültség (p<sub>zx</sub>) és a szögváltozás (Φ) hányadosaként.

Az összenyomhatósági tényező hidrosztatikos nyomás mellett definiálható a nyomás és a relatív térfogatváltozásváltozás hányadosaként. A K érték a térfogati rugalmassági tényező v. inkompresszibilitás. Ennek reciproka az összenyomhatósági tényező.

#### 9.2. ábra: Szilárdsági és összenyomhatósági tényező definiálása [ii]

Összefoglalva megállapítható, hogy a szilárd közegben terjedő rugalmas testhullámok sebességének és a kőzet sűrűségének ismeretében valamennyi rugalmassági állandó meghatározható.

### Rayleigh és Love hullámok

A testhullámokon kívül a szabad felszín közelében felületi hullámok is megfigyelhetők. Ezek a Rayleigh és Love hullámok. A földrengéseknél a földrengés mechanizmusától, mélységétől, a helyi geológiai viszonyoktól is függően elsősorban a felületi hullámoknak van pusztító hatásuk. Közös jellemzőjük, hogy diszperzívek (azaz a különböző frekvenciájú rugalmas hullámok eltérő sebességgel haladnak) továbbá az, hogy a mélység és a frekvencia szorzatával a részecskék kitérésének amplitúdója exponenciálisan csökken.

A **Rayleigh-hullám**oknál a közeg pontjai a hullám terjedési irányában lévő vertikális síkban ellipszis pályán végzik rezgésüket a forrás felé mintegy visszafelé forogva. Egy SV és egy P hullám szuperpozíciójaként kezelhetők, ahol a részecskék vertikális kitérése mintegy másfélszer nagyobb, mint horizontálisan.





A másik felületi hullám a Love hullám, itt a részecskék a vízszintes síkban, a hullám terjedési irányára merőlegesen rezegnek. Kialakulásuknak kedvez, hogyha a felszíni laza réteg alatt egy keményebb kőzet található.





9.3. ábra: A test és felületi hullámok együttes szemléltetése [iii]

A **9.3.ábra** a korábban animációkkal külön-külön szemléltetett hullámokat együtt mutatja. Az ábrán az SV, P, SH testhullámok, továbbá a Rayleigh és a Love felületi hullámok láthatók. A hullám mind az öt esetben balról jobbra, *x* irányban halad. Az elmozdulás vektor  $(\vec{u})$  komponensei  $\vec{u}(u, v, w)$ . Ebben az esetben az SV hullámra (bal oldalon, fent) vonatkozó differenciál egyenlet

$$\frac{\partial^2 w}{\partial t^2} = \frac{\mu}{\rho} \frac{\partial^2 w}{\partial x^2}$$

A P hullámra (jobb oldalon a felső ábra) vonatkozó

$$\frac{\partial^2 u}{\partial t^2} = \frac{\lambda + 2\mu}{\rho} \frac{\partial^2 u}{\partial x^2}$$

míg az SH hullámra (jobb oldalon középen)

$$\frac{\partial^2 v}{\partial t^2} = \frac{\mu}{\rho} \frac{\partial^2 v}{\partial x^2}$$

alakú.

A **9.4. ábrán** egy szeizmogram látható, mely a K-Ny-i, É-D-i és a vertikális irányú részecske elmozdulásokat szemlélteti. Feltűnő a felületi hullámok nagyobb amplitúdója. A Rayleigh hullám markánsan jelentkezik a vertikális és a horizontális (jelen esetben K-Ny-i) szeizmométer regisztrátumán, míg a Love hullám csak a horizontális szeizmogramon jelentkezik (itt az É-D-i regisztrátumon).



9.4. ábra: Test és felületi hullámok kijelölése szeizmogramon [iv]

### 3. A FÖLD FELÉPÍTÉSE

A Föld belső felépítésének a leírását a szeizmológiai megfigyelések teszik lehetővé. A kipattant földrengésekből kiinduló hullámok különböző útvonalakon haladnak. A hullámtérnek azon pontjait, ahol a rezgés fázisa azonos, hullámfelületeknek (vagy hullámfrontoknak) nevezzük. A forrás közelében a hullámfelületek gömbök, a hullámfelületer merőleges vonalak a hullámsugarak. Jóval távolabb a hullámfelületek egyre inkább egy-egy sík mentén helyezkednek el, és ilyenkor a síkhullámú közelítés alkalmazható. A rugalmas hullámok részben visszaverődnek, másrészt a határfelületeken megtörnek, a mélyebb zónákba is behatolnak, és a nagyobb földrengések a Föld egészét "átvilágítják". A Snellius-Decartes-féle törvény (mely mind a longitudinális, mind a transzverzális hullámokra érvényes) írja le a rugalmas hullámok törését, visszaverődését.

A **9.5 ábrán** a P hullámokra látjuk a hullámsugarak és az izokrónok alakulását a Föld belsejében. Az izokrónok azonos idejű felületekkel jellemezhetők, időértékük perc, az ábrán szaggatott vonallal vannak feltüntetve. A hullámfelületekre merőleges folytonos vonalak (a hullámsugarak vagy hullámnormálisok) a longitudinális hullámok által befutott útvonalat mutatják. A betűjelölés utal arra, hogy a különböző epicentrális távolságokba beérkező rugalmas hullám milyen útvonalon halad. Az epicentrális távolsággal a felszínen lévő megfigyelési pont epicentrumhoz képesti helyzetét tudjuk jellemezni, ez fokban értendő. Arra a főkörre vonatkozik, melyet az epicentrum és az észlelési pont határoz meg. A földrengés fókuszából - melyhez a 0° epicentrális távolság tartozik - longitudinális (P) és transzverzális (S) hullámok indulnak ki. Mivel a **9.5. ábra** a P hullámokra szorítkozik, ezért itt valamennyi hullámút leírásában P az első karakter.



9.5. ábra: P típusú hullámokhoz tartozó izokrónok (szaggatott) és hullámnormálisok [v]

Az, hogy az alsó köpenyben és a külső magban egy fokozatos sebesség növekedésnek kell lenni (**9.8. ábra**), a két zónában a hullámsugarak visszahajlásából következtethető ki. A P hullámokra az árnyékzóna 103° és 143° között van, 143° epicentrális távolság után két longitudinális hullám – PKP1 és PKP2 – beérkezés rövid időn belül követi egymást. Az árnyékzóna geometriai helyzetéből és a 143° epicentrális távolságot követő két longitudinális hullám beérkezésből következtettek arra, hogy 2900km mélységben jelentős sebességcsökkenés van. A (külső) magon áthaladó hullám jelölésére *Wiechert* vezette be a *Kern* szóra utalva a K betűt. A **9.6. ábra** a két testhullámra vonatkozó árnyékzónát mutatja. A földrengéssel átellenes földfelszíni észlelési pontokban olyan transzverzális hullámbeérkezést, mely a magot "átvilágítaná" azért nem kaphatunk, mert a külső mag fluidumszerű. A **9.7. ábra** a bal alsó részen látható sebességmélység modellre (*Kenett IASP91 modell*) adja meg a magon áthaladó hullámsugarakat és a D>140° epicentrális távolságokra a PKIKP, PKP1, PKP2 hullámok menetidőgörbéjét.





9.6. ábra: A testhullámok árnyékzónái



9.7.ábra: PKIKP, PKP1, PKP2 hullámokhoz tartozó hullámsugarak és menetidőgörbék [vi]

A 9.7. ábrán látható, hogy van olyan epicentrális távolság tartomány, melybe három longitudinális hullám is beérkezik. Ezek közül elsőként érkezik be az a PKIKP hullám, mely a többivel eltérően a belső magon is

áthalad (a jelölésben az l utal erre a tértartományra, míg a külső magon való áthaladásra a K betű). A PKP1 és PKP2 hullámok csak a longitudinális hullám árnyékzónájánál nagyobb epicentrális távolságok mellett észlelhetők, ellentétben a belső magon is áthaladó hullámmal, mely kis amplitúdójú longitudinális beérkezésként megjelenik a P árnyékzónában is. Ilyen PKIKP hullámsugár látható a **9.5. ábrán** pl. 120°-os epicentrális távolságnál is.

Megjegyezzük, hogy a megemlítettekhez képest további beérkezések is vannak (pl. a belső mag felszínéről reflektált hullám).

A szeizmológiai alapján a Föld belső szerkezete négy jól elhatárolható tértartománnyal írható le, melyek a kéreg, köpeny, külső és belső földmag. Rugalmassági szempontok szerint a kéreg és a köpeny felosztható litoszféra, asztenoszféra és a mezoszféra zónákra.

A földkéreg felfedezése **Mohorovicic** érdeme, a történeti áttekintő részben kitértünk arra, hogy elsőként ő mutatta ki a földkérget a földköpenytől elválasztó határfelületet a jelentős sebesség-növekedés alapján. Az ő tiszteletére ezt a határfelületet **Mohorovicic diszkontinuitás**nak (gyakran csak *Moho*-nak) nevezzük. Átlagos vastagsága a kontinentális területeken 30km, de a magas hegységek alatt az izosztatikus egyensúlyi viszonyoknak megfelelően vastagabb, elérheti a 60-70km-t is, ellentétben az óceáni területekkel, ahol a földkéreg vastagsága csupán 5-6km.

Ugyancsak a szeizmológiai mérések mutattak rá a földkéreg nem egységes voltára. A legfontosabb különbségek: az óceáni kéreg nem csak vékonyabb, hanem ellentétben a kontinentális kéreggel nincs benne meg a gránitos összetételű kőzettartomány. A kontinentális kéregben ez a savanyú rész felel meg a felsőkéregnek, melyet a *Conrad-felület* választ el a gabbró összetételéhez hasonló alsókéregtől. A földköpeny hagyományosnak mondható felosztása szerint a *Repetti-féle másodrendű felület* (980 km mélyen) választja el a felső és alsó köpenyt, egyre inkább elfogadott osztályozás szerint a felső köpeny a földkéreg és a *Byerly-féle másodrendű felület* (410 km) közötti gömbhéjszerű tértartomány, a középső a 980 és 410 km közötti, még az alsó a Repetti felület és a földmag határa közötti rész.

Közvetlenül a földmag és a földköpeny határfelülete – a Gutenberg-Wiechert-féle törésfelület – felett található a D" réteg, melynek vastagsága átlagosan 200km (150-300km között változik). A külső magot folyadékszerűnek kell feltételezni, ugyanis benne a transzverzális hullám nem terjed, másrészt benne a longitudinális hullámok sebesség csökkenése is megfigyelhető. A nagy nyomású és hőmérsékletű folyadékszerű külső és a szilárd halmazállapotú belső mag közötti határfelület a Lehmann-féle diszkontinuitás.

Rugalmassági tulajdonságok alapján a köpeny és a kéreg tértartományát három részre lehet felosztani. Ez a három gömbhéjszerű rész a litoszféra, asztenoszféra és a mezoszféra. A Föld szilikátos öve, mely a földkéregből és a földköpeny felső részéből áll, a litoszféra. A litoszféra a kontinentális területeken mintegy 150-200km, míg az óceáni területeken csupán 50-100km vastag. Az asztenoszféra a földköpenyen belüli, a közvetlenül a litoszféra alatt található, kis merevségű, alacsony sebességű zóna (LVZ), melyet *Gutenberg-csatornának* is szokás nevezni. Vastagsága eltérő a kontinentális és az óceáni területek alatt. Míg kontinentális litoszféra alatt 200-400km-t is elérhet, addig az óceáni alatt 50-100km. Benne a nyírási hullámok (ugyanúgy, mint a longitudinális hullámok) csökkent sebességgel haladnak, tehát szilárd halmazállapotú zóna. Az asztenoszférában kis mértékű olvadást (részleges olvadást) feltételeznek, mely hozzájárul az asztenoszféra plasztikus viselkedéséhez. Az asztenoszféra és a földmag határa közötti szilárd halmazállapotú, ridegebb, egyre nagyobb nyomással és hőmérséklettel jellemezhető zónát mezoszférának nevezik.

A földrengések, a Föld sajátrezgéseinek és a nukleáris robbantások szeizmikus feldolgozása révén a Föld belső felépítését a longitudinális és transzverzális terjedési sebesség és a sűrűség mélység szerinti eloszlása alapján egyre jobban megismerjük. Ezen kőzetfizikai paramétereket a sugár függvényében **Dziewonski** és **Anderson** (1981) adta meg. Mintegy kétmillió P és S hullám regisztrátumát dolgozták fel, modelljüket *Preliminary Reference Earth Model (PREM)* – Ideiglenes Referencia Föld Modellnek nevezték el.



A 9.8. ábra a mélység függvényében adja meg az általuk meghatározott sebesség és sűrűség eloszlást.



9.8. ábra: P és S hullám sebességének és a sűrűségnek mélység szerinti változása az Ideiglenes Referencia Föld Modell alapján [vii]

#### **4.** FÖLDRENGÉSEKKEL KAPCSOLATOS FOGALMAK

### Hipocentrum, epicentrum

A földrengések jellemzéséhez a fészekmélység (hipocentrum), az epicentrum (mely a hipocentrum felszíni vetülete) helye, a kipattanás időpontja, és a magnitúdó szükségesek.

Sekély fészekmélység meghatározására **Mohorovicic**, míg mély fészkű rengések hipocentrumának meghatározására **Wadati** dolgozott ki eljárást. **Kövesligethy** makroszeizmológiai megfigyelések alapján vezetett le összefüggést a fészekmélység meghatározására. Az összefüggéseket levezetésekkel együtt **Kis** (2007) ismerteti.

Az epicentrum meghatározásához legalább három olyan obszervatóriumi regisztrátum szükséges, melyekből a longitudinális és transzverzális beérkezési időkülönbség meghatározható. Minél nagyobb a beérkezési időkülönbség, annál távolabb van az állomástól az epicentrum. Ebből az időkülönbségből egyegy állomásra meghatározható az az *r* sugarú kör, melynek bármelyik kerületi pontja megfelelhet az epicentrumnak. A megoldás geometriai értelemben három kör közös metszéspontjának meghatározását jelenti. A kipattanási idő meghatározása is a longitudinális és transzverzális beérkezési időkülönbség ismeretében lehetséges, azt feltételezik, hogy mind a két hullám ugyanazt az utat teszi meg a hipocentrumtól az obszervatóriumig (*Kis*, 2007).

### Intenzitás

A földrengésnek egy adott helyen az épített környezetre gyakorolt hatásának mértékét kifejező számérték az intenzitás. Leegyszerűsítve adott helyen a pusztítás mértékével arányos, és nem fejezi ki a földrengés kipattanása során felszabaduló energiát. Európában több intenzitás skálát használtak, jelenleg (1992 óta) a tizenkét fokozatú *Európai Makroszeizmikus Skála (EMS)* van érvényben. Az I-es fokozat jelöli a kis intenzitást, a XII-es fokozat pedig a legnagyobbat.

NTERNETES KITEKINTÉS

A fokozatok leírása megtalálható a következő helyen:

## Magnitúdó

A magnitúdó értékét a földrengés során felszabaduló energia nagysága határozza meg. A magnitúdó skála logaritmikus. Ha egy rengés magnitudója egy egységgel nagyobb a másikhoz képest, akkor az kb. 30-szor nagyobb energiájú földrengést jelent.

Elsőként **Richter** dél-kaliforniai földrengésekre 1935-ben definiálta a magnitúdót. Meghatározása szerint a földrengés magnitúdója az epicentrumtól 100km-re lévő normál szeizmográffal felvett szeizmogram legnagyobb amplitúdójának mikronban leolvasott értékének 10-es alapú logaritmusa. A felületi hullám amplitúdója alapján történt a jellemzés. A nagy mélységű rengéseknél alig jelentkezik felületi hullám, ott a magnitúdó megállapításához az első beérkezés – tehát P, esetleg a későbbi S típusú hullám – amplitúdóját veszik figyelembe. A nagy földrengések méretének jellemzésére az utóbbi időben a momentum magnitúdót használják, mely a földrengés során keletkező törés fizikai jellemzőiből (nyírási modulusz, törési felület, átlagos elmozdulás a vető mentén) számítható ki.

|           | INTERNETES KITEKINTÉS                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------|
| A haszna  | álatos magnitúdó definíciókat az alábbi helyen találjuk meg:                                        |
| http://ww | w.foldrenges.hu/index.php?option=com_content&view=article&id=123:a-foeldrenges-magnitudoja-         |
| m&catid=  | -5:geofizika&Itemid=7                                                                               |
| Földreng  | ésekkel kapcsolatban további ismereteket kapunk Steiner (1983) jegyzetéből és az alábbi oldalon is: |
| http://ww | w.foldrenges.hu/index.php?option=com_content&view=article&id=43&Itemid=28 m                         |

## 5. FÖLDRENGÉSEK ELŐFORDULÁSA

A földrengésövek egybeesnek a kéreglemez határvonalakkal. *Kis mélységű földrengések* általában – h ( 70km – ott keletkeznek, ahol a lemezek ütköznek, vagy ahol egymáshoz képest elcsúsznak. *Nagymélységűek* – h ) 300km – ott jönnek létre, ahol a litoszféra lemezek a köpenybe behatolnak, behajlanak. A Csendes-óceán lemeztektonikai övei mentén pattan ki a kismélységű rengések 80%-a, a közepes rengések 90%-a és szinte valamennyi nagymélységű földrengés.

Más csoportosítás szerint *sekély fészekmélységűek* az 1-5km, *közepesek* az 5-50km közöttiek és *nagy fészekmélységűek* az 50 km-nél nagyobb mélységben kipattanó földrengések.

A következő két animáció bemutatja, hogy 1980 és 1995 között hol pattantak ki nagyobb földrengések a 16 éves időszak alatt.

 Image: Second Second

A következő animáció a korábbihoz képest annyi eltérést mutat, hogy itt a lemeztektonikai határok is fel vannak tüntetve.

**% NAGYOBB FÖLDRENGÉSEK TÖRÉSVONALAKKAL (1980-1995)** 



Az utóbbi időszak legnagyobb földrengése Japánban volt 2011. március 11-én. A földrengést a Csendesóceáni lemez Észak-Amerikai lemez alá történő szubdukciója okozta (utóbbinak Japán É-i részét is magába foglaló része az Ohotszk-lemez). Japánban a GSI Intézet 1993-ban kezdte el kiépíteni a GEONET nevű GPS hálózatot a kéregmozgás vizsgálatára, amely ma több mint 1200 folyamatosan észlelő állomásból áll. Az állomássűrűség átlagosan 20-25km közötti. A jelenkori kéregmozgásokat vektorokkal lehet szemléltetni, melyek az 1200 állomásos GPS hálózat folyamatos méréseinek feldolgozásával adhatók meg.

 INTERNETES KITEKINTÉS

 Ezt nagyon jól mutatja be a következő honlap:

 http://www.urvilag.hu/katasztrofak\_ellen/20110330\_egy\_foldrenges\_es\_szokoar\_anatomiaja\_1resz ()

A fenti honlapon az érdekes térképek és animációk mellett azzal a ténnyel is találkozunk, hogy a GPS mérésekből a Csendes-óceáni-lemez és az Ohotszk-lemez 90 mm/év átlagos közeledési sebessége miatt Japán keleti partjai mentén Kjúsút (a legdélibb rész) leszámítva nyugati irányú elmozdulás volt tapasztalható. Ez a sebesség érték a földrengés előtti időszakban lecsökkent 17-20 mm/év értékűre. A szubdukció ilyenkor részleges blokkolással párosul, mely folyamatos feszültség felhalmozódáshoz vezet. Amikor ez a feszültség meghaladja a kőzet nyomószilárdságát, törés következik be és földrengés keletkezik. A felszabaduló feszültség hatására hirtelen "visszaugranak" a lemezek, és a gyors elmozdulás a tengerfenéken is jelentkezik. Ennek függőleges komponense miatt nagy tömegű víz hirtelen megemelkedése következik be **cunami-**t (japán szó, *kikötői hullám* a jelentése), azaz szökőárt előidézve. A földrengéskor a fentiek értelmében a visszaugrás a keleti irányba következett be. Ezt látjuk a **9.9. ábrán**.

A GEONET több száz adatának feldolgozásával kapott ábra azt mutatja, hogy a 9-es magnitúdójú földrengést közvetlenül követően a K-i irányú elmozdulás egyes helyeken több métert is elért. Az elmozdulás mértékét és irányát a piros nyilak mutatják, míg a földrengést követő első nyolc órában bekövetkezett utórengések hatására az elmozdulás érthetően kisebb volt, de ez is tetemes, amit a kék nyilakkal érzékeltet az ábra. A meghatározás pontosságának mértékét a nyilak végén lévő fekete kis szakaszok mutatják.

NTERNETES KITEKINTÉS

Megjegyezzük, hogy a földrengésről számos animáció található, ezek közül ajánljuk pl. az itt találhatót: http://www.msnbc.msn.com/id/42037498/ns/world\_news-asia-pacific/

Az előrengések és az animációban is látható sok utórengés (1-50km közötti fészekmélységű tegerrengések és földrengések) is bizonyítják, hogy a folyamat jóval összetettebb, mint ahogy azt itt jellemeztük. Ennek



9.9. ábra: 2011. márc. 11-i japán földrengés [viii]

A GPS-el kimért vízszintes talajelmozdulás területi eloszlásának szemléltetése piros színű, míg a földrengést követő első nyolc órában bekövetkezett utórengések hatására bekövetkező vízszintes talajelmozdulás szemléltetése kék színű vektorokkal.

Japán környezetében négy litoszféra lemez kölcsönhatása miatt gyakoriak a földrengések.

|               | Internetes kitekintés                                                                              |
|---------------|----------------------------------------------------------------------------------------------------|
| A következd   | ő oldalon megtudható, hogy a különböző lemez kölcsönhatások milyen elmozdulásokat okoznak,         |
| és mily       | en mélységben alakulnak ki a földrengések Japán vonatkozásában:                                    |
| http://www.h  | hp1039.jishin.go.jp/eqchreng/eqchrfrm.htm []].                                                     |
| A 2011. má    | árc. 11-i japán földrengésről, továbbá a Földön jelentkező korábbi nagy rengésekről és az aktuális |
| földrengése   | skről is a legrészletesebb információt az USA Geológiai Szolgálatának a honlapjáról                |
| http://eartho | quake.usgs.gov/ ᠾ kaphatunk.                                                                       |

Természetesen más lemezhatárok mentén is létrejönnek földrengések. Pl. a transzform vetős lemezszegélyek mentén nagy mélységű földrengések kipattanása nem várható. Erre az egyik legismertebb példa a Kaliforniai-félsziget É-i részét harántoló Szent András-törésvonal.

A Szent András-törésvonal mentén a Csendes-óceáni lemez ÉNy-i, az Észak-amerikai lemez DK-i irányban csúszik el egymás mellett. A mozgás itt sem folyamatos, a kőzetlemezek időnként megállítják, blokkolják egymás mozgását, egyre nagyobb feszültség halmozódását eredményezve. Bizonyos határ felett a feszültség felszabadulása ilyen esetekben nem túl nagy mélységű földrengésekre vezet.

### 6. MAGYARORSZÁG FÖLDRENGÉS VESZÉLYEZETTSÉGE

Magyarország a nagy lemeztektonikai vonalaktól elég távol van ahhoz, hogy nagy erejű földrengés akár csak kis valószínűséggel is bekövetkezhessen.



A fenti honlap korábbi térképeiből a 9.10. ábrán láthatót emeljük ki.



9.10. ábra: Földrengések eloszlása Magyarországon a nagyobb földrengés gyakorisággal jellemezhető törésvonalakkal [ix]

Egyre inkább valószínűsíthető, hogy a magyarországi földrengések kialakulásában jelentős tényező az Adriai-mikrolemez óra járásával ellentétes irányú mozgása. GPS mérések alapján az Adriai-mikrolemez 2,5-4,5 mm/évvel közeledik felénk, s a Pannon-medence ennek hatására 1,5 mm/évvel nyomódik össze. Összefoglalva elmondható, hogy Magyarország nem tartozik a magas szeizmicitású területek közé. 1810 óta öt, legalább ötös, de 6-nál kisebb magnitúdójú földrengés volt. Az utolsó ezek között az 1956-os dunaharaszti földrengés volt, 5,6-es magnitúdóval. Az 1985-ös berhidai földrengés magnitúdója nem érte el ezt az erősséget, 4,7-es magnitúdójú volt.

### Eurocode 8 szabvány

Magyarországon 2011-től van érvényben az EU egységes, Eurocode 8 földrengés szabványa. Ennek – leegyszerűsítve – az a lényege, hogy minden építményt úgy kell tervezni, hogy az építmény élettartama alatt 10% valószínűséggel előforduló földrengést komolyabb szerkezeti károsodás, összeomlás nélkül kibírjon. Az építmény élettartamára általában 50 évet tételeznek fel. Valamennyi EU-s ország az Eurocode 8 szabvány kiegészítéseként saját nemzeti mellékletében (Magyarországon az *MSZ EN 1998-1*) közli a helyi szeizmikus zónákat, a tervezéshez szükséges alapadatokat.

A földrengésbiztos építmények tervezéséhez elengedhetetlen a tervezési válaszspektrum ismerete, mely a frekvencia függvényében adja meg a várható gyorsulás vízszintes és függőleges összetevőjét. A szeizmikus zónatérkép alapján meghatározható az építkezési hely szeizmikus zóna szerinti besorolása, mely zónabesorolás az alapkőzeten jelentkező várható gyorsulásértéket tükrözi. Ezt a T=0 sec-hoz tartozó gyorsulásértéket (a<sub>nR</sub>) a szeizmológusok *PGA (Peak Ground Acceleration)* értéknek nevezik és a

gravitációs gyorsulás tört részeként adják meg. A magyarországi öt zóna 0,08g és 0,15g közötti gyorsulás értékekkel jellemezhető. A földrengésbiztos építmények tervezéséhez főleg a vízszintes gyorsulást kell figyelembe venni, mely kb. kétszer nagyobb mint a vertikális komponens. Tekintettel arra, hogy a legtöbb építmény nem az alapkőzetre épül, a földrengés helyi hatása függ az altalaj típusától is. Laza talajon (pl. lösz, folyami üledék) a gyorsulás lényegesen nagyobb, mint ugyanazon földrengés hatására, ugyanakkora távolságban, a kemény kőzeten mérhető gyorsulás. A helyi geológiai viszonyok figyelembe vételére az MSZ EN 1998-1/Eurocode 8 földrengés szabvány a felső 30 m-es összlet S-hullám átlagsebessége alapján hétféle talajkategóriát definiál. Öt egyszerűbb (talajfolyósodásra nem hajlamos és képlékeny rétegeket nem tartalmazó) esetben a tervezéshez szükséges szeizmikus együtthatók a szabványban mellékelt táblázatban megtalálhatók, melyek ismeretében a szeizmikus hatás vízszintes és függőleges összetevőjét leíró válaszspektrum számítható. Speciális talajok – a felső 30m-es összletben pl. talajfolyósodásra hajlamos vagy legalább 10 m vastagságú, nagy víztartalmú agyagréteg – esetében viszont geofizikai és geotechnikai vizsgálatokra van szükség.

Eurocode 8 szabványhoz képest lényegesen szigorúbb előírásokat kell alkalmazni a veszélyes ipari létesítmények (pl. atomerőművek, radioaktív hulladéktárolók) tervezésekor.

INTERNETES KITEKINTÉS Szeizmikus zónatérkép: http://www.foldrenges.hu/index.php?option=com\_content&view=article&id=94:magyarorszag-foeldrengesveszelyeztetettsege&catid=5:geofizika&Itemid=7

## 7. HIVATKOZÁSOK, IRODALOMJEGYZÉK

Bormann 2002: Identification and analysis of short-period core phases 🕕

Csókás 1984: Alkalmazott Geofizika , Felszíni kutató módszerek

Dziewonski, Anderson 1981: Preliminary reference Earth model, Physics of the Earth and Planetary Interiors, 25., pp.297-356.

Kis 2007: Általános Geofizikai Alapismeretek, ELTE, Eötvös Kiadó

Meskó 1989: Bevezetés a geofizikába, Tankönyvkiadó, Budapest

Mussett, Khan 2000: Looking into the Earth

Sharma 1986: Geophysical Methods in Geology, 2nd Edition

Steiner 1983: A Föld Fizikája

8. Ellenőrző kérdések

| 💐 9. LECKE: SZEIZMOLÓGIAI ALAPOK - FELADATOK                                                                                               | <b>(</b> ) |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Többször megoldható feladat, <b>elvégzése kötelező</b> .<br>A feladat végső eredményének a mindenkori <b>legutolsó megoldás</b><br>számít. |            |  |  |  |  |
| Jelölje meg a helyesnek tartott válaszokat a felkínált lehetőségek közül!                                                                  |            |  |  |  |  |
| 1. Ki szerkesztette meg a az első szeizmoszkópot?                                                                                          |            |  |  |  |  |
| A japánok. Az egyiptomiak.                                                                                                                 |            |  |  |  |  |
| A kínai Chang Heng Kr. u. 132-                                                                                                             |            |  |  |  |  |

ben.

2. Mikor volt az a lisszaboni földrengés , melynek utólag becsült magnitúdója 8,75 ?

1955

1755

1855

3. Melyik volt az első földrengés, melynél felismerték, hogy az elmozdulás törésvonal mentén történt?

456 Savaria 1906 San-Francisco-i földrengés

1819-es indiai Cutch

# 4. Hol és mikor volt Magyarország területén a legnagyobb erősségű, feljegyzett földrengés?

1956-ban Dunaharaszti

1922-ben Kecskemét

1763-ban Komáromban volt, melynek becsült magnitúdója 6,3

# 5. Kitaibel és Tomtsányi 1814-ben megjelent 1810 januári földrengéssel foglalkozó tanulmányukban mit adtak meg?

Intenzitás eloszlást.

Fészekmélységet.

Tanulmányukban bemutatták a legnagyobb kárt szenvedett terület határvonalát és az első lökés irányának területi eloszlását is.

# 6. Mikor sikerült nagy távolságban kipattant földrengést műszeresen detektálni?

1906 San-Francisco-i földrengést a Földön egyszerre több helyen is.

1755-ös lisszaboni földrengést a kínaiak mérték ki.

A Japánban 1889-ben kipattant földrengés volt az első, Potsdamban regisztrálták.

# 7. A magyarok közül a XX. század elején ki vezetett le összefüggést a földrengések fészekmélységének meghatározására?

Kövesligethy 1907-ben.

Ozorai 1906-ban.

8. Ki állapította meg a földrengések beérkezési időinek elemzéséből, hogy a Föld magjában egy kis sebességű zónának is kell lenni?

Cecchi (1875)

Oldham (1906)

### 9. Ki mutatta ki elsőként a földkéreg és földköpeny közti határfelületet?

Mohorovicic (1909)

Wiechert (1909)

#### 10. Mit neveznek Benioff-zónának?

Az óceáni litoszféra szubdukciós része.

A kb. 30-60°-os dőléssel aláhajló óceáni litoszférához köthető zóna, mely a földrengések hipocentrum eloszlása alapján jelölhető ki.

# 11. Mi a közös Rossi és Forel (1883), Omori (1894), Mercalli (1897), Wood és Neumann (1931) szeizmológiai munkásságában?

Nevükhöz intenzitás skála kidolgozása fűződik.

Földrengés előrejelzéssel eredményesen foglalkoztak.

Epicentrum meghatározással foglalkoztak.

# 12. Ki vezette be a földrengés hipocentrumában felszabaduló energia jellemzésére a magnitúdó fogalmát?

Richter 1935-ben

Wood 1905-ben

Mercalli 1897-ben

### 13. Mi az Átfogó Atomcsend Szerződés (Comprehensive Nuclear-Test-Ban Treaty, CTBT) által létrehozott ellenőrzési rendszer szeizmikus megfigyelő részének a feladata?

A teljes hullámalak elemzésével a felszín alatti nukleáris robbantásokat a földerengésektől megkülönböztessék, a robbantásokat pedig területileg minél pontosabban lehatárolják.

Az állomások fő feladata a tengeri nukleáris robbantások tényének feltárása.

A levegőbeli nukleáris robbantások tényének feltárása.

14. Melyik hullámegyenlet írja le az x tengellyel párhuzamosan haladó longitudinális hullám homogén, izotróp közegbeli viselkedését, ha az elmozdulás-vektor komponensei  $\vec{u}(u, v, w)$ 

$$\frac{\partial^2 w}{\partial t^2} = \frac{\mu}{\rho} \frac{\partial^2 w}{\partial x^2} \qquad \qquad \frac{\partial^2 u}{\partial t^2} = \frac{\lambda + 2\mu}{\rho} \frac{\partial^2 u}{\partial x^2}$$
$$\frac{\partial^2 v}{\partial t^2} = \frac{\mu}{\rho} \frac{\partial^2 v}{\partial x^2}$$

15. Melyik hullámegyenlet írja le az x tengellyel párhuzamosan haladó transzverzális SV hullám homogén, izotróp közegbeli viselkedését, ha az elmozdulás-vektor komponensei

 $\vec{u}(u,v,w)$ 

$$\frac{\partial^2 w}{\partial t^2} = \frac{\mu}{\rho} \frac{\partial^2 w}{\partial x^2}$$
$$\frac{\partial^2 v}{\partial t^2} = \frac{\mu}{\rho} \frac{\partial^2 v}{\partial x^2}$$

$$\frac{\partial^2 u}{\partial t^2} = \frac{\lambda + 2\mu}{\rho} \frac{\partial^2 u}{\partial x^2}$$

16. Melyik hullámegyenlet írja le az x tengellyel párhuzamosan haladó transzverzális SH hullám homogén, izotróp közegbeli viselkedését, ha az elmozdulás-vektor komponensei  $\vec{u}(u, v, w)$ 

$$\frac{\partial^2 v}{\partial t^2} = \frac{\mu}{\rho} \frac{\partial^2 v}{\partial x^2} \qquad \qquad \frac{\partial^2 w}{\partial t^2} = \frac{\mu}{\rho} \frac{\partial^2 w}{\partial x^2}$$
$$\frac{\partial^2 u}{\partial t^2} = \frac{\lambda + 2\mu}{\rho} \frac{\partial^2 u}{\partial x^2}$$

### 17. Válassza ki azt a fizikai mennyiséget, amely nem rugalmassági állandó!

| nyírási modulusz | Young modulusz |
|------------------|----------------|
| Rayleigh-szám    | Poisson szám   |

összenyomhatósági tényező

#### 18. Milyen típusú hullámok szuperpozíciójaként jön létre az Rayleigh-hullám?

SH és SV

SH és P

SV és P

Ρ

### 19. Melyik hullámtípus lehet Love hullám?

# 20. Jellemezze annak a földrengéshullámnak az útvonalát, melynek hullámsugara PKIKP karakterekkel jellemezhető!

A hipocentrumból longitudinális hullámként indul, a köpenyen áthaladva behatol a külső magba és ezt követően a belső magon is áthalad. Kifelé külső mag, köpeny a haladási útvonal és a Föld felszínén S hullámként észlelnénk.

SH

A hipocentrumból longitudinális hullámként indul, a köpenyen áthaladva behatol a külső magba és ezt követően a belső magon is áthalad. Kifelé külső mag, köpeny a haladási útvonal és a Föld felszínén is P hullámként észlelnénk.

# 21. Hány szeizmológiai obszervatórium adata szükséges az epicentrum meghatározásához?

Az epicentrum meghatározásához legalább három olyan obszervatóriumi regisztrátum szükséges, melyekből a longitudinális és transzverzális beérkezési időkülönbség meghatározható.

Már kettőből is meg lehet határozni.

Minél több obszervatórium van, annál jobb.

22. A magnitúdó és az intenzitás értékek közül melyik fejezi ki a földrengés kipattanása során felszabaduló energia nagyságát?

Intenzitás.

Magnitúdó.

23. Hány fokozata van az 1992 óta érvényben lévő Európai Makroszeizmikus Skálának (EMS)?

Tizenkettő (I-XII) Kilenc.

Tíz.

# 24. Van-e különbség a Japánban és a Szent-András törésvonal mentén kipattanó földrengések kialakulási mechanizmusában?

Van, mert míg Japánban a legfontosabb tényező a Japán környezetében lévő négy nagy lemez kölcsönhatása, melyek közül a Csendes-óceáni lemez szubdukcióját kell kiemelni, addig a Szent András-törésvonal mentén a Csendes-óceáni lemez ÉNy-i, az Észak-amerikai lemez DK-i irányban csúszik el egymás mellett transzform vetős lemezszegélyek mentén (igaz, ettől É-ra a az óceáni lemez szubdukciója itt is megfigyelhető).

Nincs, legfeljebb annyi, hogy Japánban nagyobb a szeizmicitás.

#### 25. Mi a feladata a Japánban kiépített GEONET nevű GPS hálózatnak?

GEONET nevű GPS hálózatot a kéreg deformáció vizsgálatára hozták létre, amely 2011-ben több mint 1200 folyamatosan észlelő állomásból adatainak feldolgozását teszi lehetővé.

GEONET nevű GPS hálózatot a szokásos céllal a szokásos állomássűrűséggel hozták létre.

#### 26. Melyik magyarországi törésvonal mentén legnagyobb a szeizmicitás?

Móri vonal.

Diósjenői vonal.

Darnó vonal.

### 27. Mi az Eurocode 8 földrengés szabvány lényege?

Valamennyi EU-s országra érvényes, ez egy egységes szabvány, így nincs az egyes országokra vonatkozó saját melléklet.

Minden építményt úgy kell tervezni, hogy az építmény élettartama alatt 10% valószínűséggel előforduló földrengést komolyabb szerkezeti károsodás, összeomlás nélkül kibírjon. Valamennyi EU-s ország az Eurocode 8 szabvány kiegészítéseként saját nemzeti mellékletében adja meg a helyi szeizmikus zónákat, a tervezéshez szükséges további alapadatokat.

### 28. Mi a tervezési válaszspektrum?

A tervezési válaszspektrum a vizsgált telephelyen a frekvencia függvényében adja meg a földrengés során várható gyorsulás vízszintes és függőleges összetevőjét.

Talajrészecskék elmozdulásának amplitúdó spektruma.

A tervezési válaszspektrummal a földrengés során várható statikus gyorsulás vízszintes és függőleges összetevőjét lehet jellemezni.

# **BIBLIOGRÁFIA:**

- [i] Sharma (1986) nyomán
- [ii] Sharma (1986) nyomán
- [iii] Csókás (1984) alapján
- [iv] Musset, Khan 2000 alapján
- [v] Meskó (1989) alapján
- [vi] Bormann 2002 nyomán
- [vii] Dziewonski, Anderson 1981 alapján
- [viii] ftp://sideshow.jpl.nasa.gov/pub/usrs/ARIA/ARIA\_co\_and\_postseismic\_V0.3.pdf
- [ix] Tóth, Mónus, Zsíros (2005) alapján

Digitális Egyetem, Copyright © Pethő Gábor, Vass Péter, 2011